УДК 621.9

А. В. Сахаров, канд. техн. наук, А. М. Арзыбаев, канд. техн. наук,

Н. А. Родионова, канд. техн. наук

Институт машиноведения им. А.А. Благонравова РАН, г. Москва, Россия *Тел.*: +7 (499) 135-55-21; *E-mail*: <u>modul_lab@mail.ru</u>

РЕШЕНИЕ ПРЯМОЙ ЗАДАЧИ ПО НАЗНАЧЕНИЮ НОРМ ГЕОМЕТРИЧЕСКОЙ ТОЧНОСТИ ПРОЕКТИРУЕМОГО МЕТАЛЛОРЕЖУЩЕГО СТАНКА

В статье представлено решение задачи по установлению норм геометрической точности при проектировании металлорежущих станков. Изложены исходные данные и основные этапы методики назначения норм геометрической точности станка. Показана взаимосвязь показателей точности предмета производства на станке с показателями геометрической точности станка.

Ключевые слова: станок, геометрическая точность, нормы, показатели точности, предмет производства, погрешности, методика.

A. V. Sakharov, A. M. Arzybaev, N. A. Rodionova

SOLUTIONOF DIRECT PROBLEM PURPOSE STANDARDGEOMETRICS' ACCURACY OF THE DESIGNED MACHINE-TOOL

The article presents the task of setting standards in the design of the geometrics' accuracy of machine-tool. It sets out the original data and milestones methods of purpose standard of geometrics' accuracy of the machine-tool. To show the interrelation of precision indicators an object of manufacture of the machine-tool to machine-tool alignment indicator.

Key words: machine-tool, geometrics' accuracy, standard, precision indicators, an object of manufacture, errors, methods.

1. Введение

Вопросы обеспечения точности проектируемых металлорежущих станков прямо связаны с вопросами обеспечения точности изготавливаемых на этих станках деталей. При этом существует две задачи: прямая и обратная. Прямая задача заключается в проектировании основных формообразующих узлов и деталей металлорежущих станков с такой точностью, чтобы станок обеспечивал требуемую точность изготовления деталей. Обратная задача возникает в том случае, когда имеется станок и требуется определить точность изготавливаемых на нем деталей. Такая задача была решена в работе [1], где по нормам геометрической точности станка определялась максимальная точность изготовления модулей поверхностей деталей [2].

При решении прямой задачи руководствуются нормами геометрической точности, которые установлены стандартами для большинства типов станков. Вместе с тем, нормы геометрической точности для специальных и агрегатных станков не регламентированы стандартами, а при проектировании новых компоновок известных типов станков можно столкнуться с проблемой отсутствия соответствующего стандарта.

В связи с этим представляется актуальной задача по разработке методики назначения норм геометрической точности для проектируемых металлорежущих станков, для которых отсутствуют соответствующие стандарты.

2. Основное содержание и результаты работы

В результате проделанной работы такая методика была создана[3]. Исходными данными являются: предметы производства, изготовляемые на станке (поверхности,

©Сахаров А.В., Арзыбаев А.М., Родионова Н.А.; 2015.

совокупности поверхностей, сочетания поверхностей, модули поверхностей или детали), компоновка станка и планируемый класс точности станка.

Методика включает в себя последовательное выполнение следующих этапов:

- 1. Определение показателей геометрической точности предмета производства, изготавливаемого на станке.
- 2. Установление допустимых отклонений показателей геометрической точности предмета производства: квалитеты точности размеров, допуски на отклонения геометрической формы и относительного положения.
- 3. Выявление геометрических погрешностей элементов станка, приводящих к возникновению геометрических погрешностей предмета производства.
- 4. Назначение норм геометрической точности станка, обеспечивающих требуемую точность изготовления предмета производства.

Апробация методики проводилась при проектировании фрезерноцентровального станка для мелкосерийного и серийного производства. Компоновка станка состоит из силовой головки с фрезерным и сверлильным шпинделями и поворотного стола, оснащенного станочным приспособлением с самоцентрирующими переналаживаемыми призмами. Силовая головка станка неподвижна, а стол совершает продольное и поперечное движение подачи и установочное вращательное движение.

Определим показатели геометрической точности центровых отверстий наиболее распространенной формы A (рис.1) с углом конуса $60^{\circ}[4]$ без предохранительной фаски.

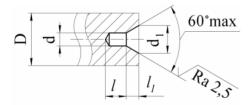


Рис.1. Эскиз центрового отверстия формы А

Показателями точности центрового отверстия формы А (рис.1) являются:

- точность угла конуса (60° \pm 30') и точность длины конуса l_1 (предельное отклонение по H11-H12);
- точность формы конического отверстия в поперечном сечении (отклонение от круглости);
- точность относительного положения центрового отверстия (отклонение от соосности и параллельности оси центрового отверстия относительно оси заготовки):
- шероховатость конического отверстия по параметру $Ra \le 2.5$ мкм.

На следующем этапе определялись элементы фрезерно-центровального станка, геометрические погрешности которых вызывают геометрические погрешности на изготавливаемых центровых отверстиях. Рассматривалась силовая головка станка.

Анализ конструкции силовой головки фрезерно-центровального станка показал, что к возникновению геометрических погрешностей изготовления центровых отверстий могут приводить следующие геометрические погрешности фрезерного и сверлильного шпинделей:

– радиальное биение конического отверстия фрезерного шпинделя;

- радиальное биение внутреннего конуса сверлильного шпинделя (у торца и на расстоянии l от торца шпинделя);
- осевое биение сверлильного шпинделя;
- параллельность траектории перемещения сверлильного шпинделя относительно рабочей поверхности стола.

При анализе не учитывались геометрические погрешности станка, из-за которых возникают погрешности изготовления торцов валов, поскольку погрешности торцов мало влияют на точность последующей обработки заготовки вала. В таблице 1 представлены геометрические погрешности силовой головки фрезерно-центровального станка и вызываемые ими погрешности центрового отверстия.

Таблица 1.Влияние погрешностей станка на погрешности центрового отверстия

No	Геометрические погрешности силовой го-	Погрешности центрового отвер-
Π/Π	ловки станка	стия
1.	Радиальное биение внутреннего конуса свер-	Вазбирка наитпорого отранотия
	лильного шпинделя	Разбивка центрового отверстия
2.	Отклонение от параллельности траектории	Отклонение от параллельности
	перемещения сверлильного шпинделя отно-	оси центрового отверстия и оси
	сительно рабочей поверхности стола	заготовки

Для назначения норм геометрической точности фрезерно-центровального станка проводился размерный анализ, т.е. выявлялись звенья станка, смещения и повороты которых непосредственно вызывают погрешности изготовления центровых отверстий.

Радиальное биение внутреннего конуса сверлильного шпинделя примем равным как у вертикально-сверлильного станка нормальной точности (30 мкм). Отклонение от параллельности траектории перемещения сверлильного шпинделя относительно рабочей поверхности стола вызвано поворотами звеньев фрезерно-центровального станка. Для нормирования этой геометрической погрешности рассмотрим угловую размерную цепь фрезерно-центровального станка в плоскости *YOZ* (рис.2).

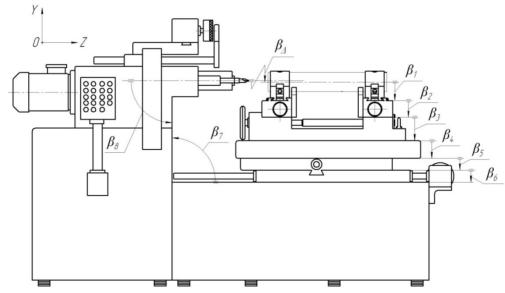


Рис.2. Угловая размерная цепь фрезерно-центровального станка

Замыкающим звеном этой цепи является относительный поворот β_{Δ} оси сверлильного шпинделя и оси заготовки.

Проектируемый фрезерно-центровальный станок должен иметь нормальный класс точности, а центровые отверстия будут изготовляться на валах с диаметральными размерами в интервале 20-80 мм. В этом случае, исходя из стандарта [5], для седьмого квалитета точности при диаметре вала 20 мм допускаемое отклонение от параллельности составляет 10 мкм. Примем этот допуск за допуск замыкающего звена β_{Δ} угловой размерной цепи станка на 100 мм длины: $T_{\beta_{\alpha}}$ =0,01/100мм.

При этом повороты оси сверлильного шпинделя и рабочей поверхности стола могут быть направлены только в сторону оси вращения сверлильного шпинделя. Положительным направлением поворота будем считать против часовой стрелки с координатой середины поля допуска замыкающего звена: $\Delta_{\mathcal{OB}_n} = +0,005/100$ мм.

Теперь по допуску замыкающего звена установим допуски на относительные повороты составляющих звеньев угловой размерной цепи. Рассчитаем среднюю величину допуска звеньев угловой размерной цепи по методу полной взаимозаменяемости[6]:

$$T_{cp} = \frac{T_{\beta,0}}{m-1} = \frac{0.01}{9-1} = 0.001/100 \text{ MM},$$

где m — общее количество звеньев цепи.

Полученная средняя величина допуска звеньев угловой размерной цепи является неэкономичной, поэтому воспользуемся методом неполной взаимозаменяемости. Средняя величина допуска звеньев угловой размерной цепи, с принятым риском P=10% и характером рассеяния отклонений размеров по закону Симпсона:

$$T_{cp} = \frac{T_{\beta_d}}{t_d \sqrt{\lambda_{cp,}^{'}(m\text{-}1)}} = \frac{0.01}{1.65 \sqrt{\frac{1}{6}(9\text{-}1)}} = 0.0052/100 \text{ mm} \approx 0.01 \text{mm}/100 \text{ mm},$$

где: $T_{\mathcal{B}_{\mathcal{A}}}$ — допуск замыкающего звена угловой размерной цепи; $t_{\mathcal{A}}$ — коэффициент риска ($t_{\mathcal{A}}$ =1,65 при P=10%); λ_{cp}^{t} —средний коэффициент закона рассеяния отклонений размеров (λ_{cp}^{t} =1/6для закона Симпсона); m — общее количество звеньев цепи.

Полученное значение среднего допуска является приемлемым. Учитывая трудности изготовления и монтажа деталей станка, входящих в размерную цепь, были установлены следующие значения допусков:

$$T_{\beta_2} = 0.004/100 \text{mm}; \ T_{\beta_2} = 0.006/100 \text{mm}; \ T_{\beta_3} = 0.007/100 \text{mm}; \ T_{\beta_4} = 0.008/100 \text{mm}; \ T_{\beta_5} = 0.006/100 \text{mm}; \ T_{\beta_5} = 0.005/100 \text{mm}; \ T_{\beta_5} = 0.004/100 \text{mm}.$$

Правильность установленных допусков проверялась по формуле:

$$T_{\beta_{\Delta}} = t_{\Delta} \cdot \sum_{i=1}^{m-1} \lambda_{cp.}^{i} \cdot T_{\beta_{i}}^{2} = 1,65 \cdot \sqrt{\frac{1}{6} \cdot (0,004^{2} + 0,006^{2} + 0,007^{2} + 0,008^{2} + 0,006^{2} + 0,003^{2} + 0,005^{2} + 0,004^{2})} = 1,65 \cdot \sqrt{\frac{1}{6} \cdot (0,004^{2} + 0,006^$$

=0.010/100MM.

Величина допуска замыкающего звена угловой размерной цепи фрезерноцентровального станка при заданных допусках составляющих звеньев оказалась равной принятой величине (0,01/100 мм), что означает правильность установленных допусков.

3. Заключение

Таким образом, рассмотренный пример показал, что предложенная методика назначения норм геометрической точности проектируемых металлорежущих станков имеет практическую ценность, поскольку позволяет обоснованно устанавливать показатели геометрической точности станков и проводить их нормирование при проектировании агрегатных и специальных станков, а также для новых компоновок существующих типов металлорежущих станков.

ЛИТЕРАТУРА

- 1. Сахаров А. В. Установление технологических возможностей станков для проектирования технологических процессов и обоснования производственной программы: дис. канд. техн. наук. Москва. 2012. 135 с.
- 2. Сахаров А. В., Насиров Э. З. Определение технологических возможностей токарного станка 16А20Ф3 // Справочник. Инженерный журнал. 2013. №12. С.29–35.
- 3. Сахаров А. В. Методика назначения норм геометрической точности при проектировании металлорежущего станка // Труды XXVII Международной инновационноориентированной конференции молодых ученых и студентов МИКМУС-2015, 2-4 декабря 2015г. С.40-43.
- 4. ГОСТ 14034-74. Отверстия центровые. Размеры. М.: Стандартинформ. 2006. 6 с.
- 5. ГОСТ24643-81. Основные нормы взаимозаменяемости. Допуски формы и расположения поверхностей. Числовые значения. М.: ИПК Издательство стандартов. 2004. 8 c.

Поступила в редколлегию 24.01.2016 г.