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НИЖНЯЯ ГРАНИЦА ЧАСТОТЫ СОБСТВЕННЫХ КОЛЕБАНИЙ КОНСОЛИ 

ФЕРМЫ МАНИПУЛЯТОРА 

 
Ферма манипулятора, рассчитанного на динамические нагрузки, представляет собой плоскую 

статически определимую конструкцию с массами, распределенными по узлам консоли. Предлагается 

алгоритм вывода зависимости первой частоты колебаний конструкции от числа панелей в аналитиче-

ской форме. Используются операторы системы символьной математики Maple и метод индукции по 

двум параметрами фермы: числу панелей в консоли и числу панелей в вертикальной опорной стойке - 

ферме. Коэффициенты искомой формулы находятся как общие члены последовательностей коэффици-

ентов, полученных в результате решения серии задач с увеличивающимся числом панелей в ферме. Ис-

пользуется формула Донкерлея. Решение имеет  высокую точность. Для сравнения использовался тра-

диционный численный метод решения задачи.  
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LOWER BOUND OF THE NATURAL OSCILLATION FREQUENCY OF THE MANIPULATOR 

TRUSS CONSOLE 

The truss of a manipulator designed for dynamic loads is a flat, statically determinate structure with masses dis-

tributed over the console nodes. An algorithm is proposed for deriving the dependence of the first oscillation 

frequency of the structure on the number of panels in an analytical form. The operators of the Maple symbolic 

mathematics system and the induction method are used for two parameters of the truss: the number of panels in 

the console and the number of panels in the vertical support rack-truss. The coefficients of the desired formula 

are found as common terms of the sequences of coefficients obtained as a result of solving a series of problems 

with an increasing number of panels in the truss. The formula of Dunkerley is used. The solution has high accu-

racy. For comparison, the traditional numerical method of solving the problem is used. 

Keywords: console, truss, Dunkerley method, oscillations, first frequency 

 

1. Introduction 

The calculation of the natural oscillations frequencies for manipulators designed for 

high-speed work with high overloads and stresses of individual parts is of great importance. If 

the design of the manipulator truss contains many elements, then the calculation of the entire 

spectrum of oscillations becomes quite difficult. Numerical methods in such cases tend to ac-

cumulate rounding errors, which sometimes leads to unpredictable results. In fact, the entire 

spectrum for practice does not always need to be calculated. The main value here is the first, 

lowest frequency. To calculate the lower bound of this quantity, the Dunkerley method is 

known, which actually replaces the complex problem of the eigenvalues of a matrix (some-

times of very large dimension) with a simple calculation of its trace. This problem can also be 

solved analytically. In this paper, this method is used to derive a formula for the frequency of 

the plane model of the manipulator. 

The solution is based on the method previously used in determining analytical expres-

sions for the deflection of trusses [1]. The problems of determining the oscillation frequencies 

of beam trusses were solved in the Maple system in [2–5]. 

2. Dunkerley's approximation 

The truss consists of a vertical (support) part with m panels in height and a console 

with masses fixed in the nodes (Fig. 1). The forces in the truss rods required to calculate the 
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rigidity of the structure using the Mohr's integral are calculated in analytical form according 

to the program [1], written in the language of symbolic mathematics Maple. 

To do this, the coordinates of the nodes and the grid diagram are entered into the pro-

gram. The scheme is encoded by special lists N[i] containing the numbers of the ends of the 

rods. The rods and nodes are numbered (Fig. 2). 

 

 

Figure 1. Truss, m=5, n=4 Figure 2. Numbering of nodes and rods, 

m=2, n=3. 

 

Here is a fragment of the data entry program. The origin is placed in the leftmovable 

support: 
 H:=m*h-h+c: 
 for i to m do  x[i]:=0:x[i+m+1]:=a: 

                y[i]:=h*i-h;y[i+m+1]:=h*i-h; end: 
 x[m+1]:=0:  y[m+1]:=H: x[2*m+2]:=a: y[2*m+2]:=H: 
 for i to n do  x[i+2*m+2]:=i*b+a;   y[i+2*m+2]:=H-c;   
                x[i+2*m+n+2]:=i*b+a; y[i+2*m+n+2]:=H;  end: 

Next, we consider the case a=b.  The rods of the support posts are entered in two lists: 

 
 for i to m do 
  N[i]:=[i,i+1]; N[i+m]:=[i+m+1,i+m+2]; 
 end: 

The total number of rods in the truss is  4 1m n    rods, including three rods that model 

supports.  The number of degrees of freedom of the system under the assumption that the 

masses move only vertically is K=2n. The solution according to the Dunkerley method [7] for 

the first oscillation frequency is expressed in terms of the oscillation frequencies of individual 

loads: 

2

1

1/ 1/
K

D p

p

   ,                                                               (1) 

 

where p
 
is the oscillation frequency of the mass   located in the console node. The equation 

of the motion of a single mass has the form: 

 

0,p p py d y 
 
p=1, ... , K, 
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where is pd  the stiffness coefficient py – is the mass displacement, and py  is the acceleration. 

Hence, the oscillation frequency of a single load (partial frequency) has the form: 

/p pd  . The coefficient of rigidity is calculated using the Mohr integral: 

 

 
η 3 2

( )
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p p j j

j
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  . 

Here it is indicated: 
( )p
jS  — the forces in the rod with the number j from the action of 

a single vertical force applied to the node where the mass with the number p is located, E – 

the elastic modulus of the rod material, F — the cross-sectional area of the rods. The cross 

sections and the material of the rods (except for the three supporting ones) are assumed to be 

the same for the entire truss. From (1) follows: 
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(2) 

General view of the solution for the coefficient n  at m = 3: 

 
3 3 3 2
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(3) 

 

Solving the problem sequentially for n = 1, 2, 3,..., we get: 

   

   

3 3 2 3 2

1

3 3 2 3 2

2

3 3 2 3 2

3

3 3 2 3 2

4

(4 5 20 4 ) / ( ),

2(12 9 36 8 ) / ( ),

80 43 172 40 / ,

4 50 21 84 20 / ,...

a c c h d c EF

a c c h d h EF

a c c h d h EF

a c c h d h EF

    

    

    

    

 

To generalize these expressions to n, we use the rgf_findrecur operator from the spe-

cial package genfunc of the Maple system. Thus, we obtain the recurrent equations for the 

elements of the sequences. For the coefficient 1C , for example, we have a linear homogene-

ous equation of the fifth order: 5,14,13,12,11,1,1 510105   nnnnnn CCCCCC . The rsolve 

operator gives a solution to this equation: 

                                                   
2

1 ( 1) ( 2) / 3.C n n    

Other coefficients are found in the same way: 

2

2

3

2

4

(7 6 7) / 3,

2 ( 1)( 2) / 3,

4 (2 6 7) / 3.

C n n n

C n n n

C n n n

  

  

  

 

 

The task contains two independent integer-valued parameter. To generalize the solu-

tion to an arbitrary number of panels in height m, you need to repeat the entire solution se-

quentially for different m =1, 2, … Calculations show that only the coefficient 
4C
 
depends on 
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the number of panels m . By induction, using the rgf_findrecur and rsolve operators, we ob-

tain in the general case:  

2

4, 2( 1) (2 6 7) / 3.nC m n n n     

Hence, taking into account (2) and (3), we obtain the final formula for the lower bound 

of the first natural frequency of oscillations of the truss: 

3 3 3 2

1 2 3 4

D
C a C c C d C c h

EF
c

  
   .                                       (4) 

 

3. Numerical verification 

The accuracy of the obtained formula can be estimated by comparing it with a full-

scale numerical calculation of all frequencies of the structure. The forces calculation can be 

performed in the same program that was used to calculate the forces in the analytical form. 

The equations of mass   motion have the form: 

 

0K K  I Y D Y , 

 

Here the following symbols are introduced: KD – stiffness matrix, 1 2[ , ,..., ]TKy y yY  

– vector of vertical displacements of loads, 
KI  – unit matrix, Y  – vector of accelerations of 

nodes with masses  . The stiffness matrix KD is calculated as the inverse of the flexibility 

matrix KB , whose elements are determined using the Mohr's integral: 

 
3
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                                               (5) 

 

Here ( )i

pS — the force in the rod with the number p from the action of the unit vertical 

force at the node i, pl  
— the length of the rod. The three rods in the supports are not de-

formed. The forces in these rods are not included in the sum (5). 

The eigenvalues of the matrix KB  are found using the Eigenvalues operator from the 

specialized linear algebra package LinearAlgebra of the Maple system. The graph (Fig. 3) 

shows the curves of the dependence of the first frequency 
num , obtained numerically, and 

D  
according to the formula (4). The curve of the analytical solution according to Dunkerley 

is located slightly below the numerical solution, the curves are almost identical. Accepted: m 

= 3, 1000EF Н , = 100kg, a = 3m, h = 5 m. To clarify the nature of the relative error, you 

can trace the dependence of the value   /num D num      from the number of panels. 

The error of the solution varies depending on the number of panels from 0.92% for n = 

2 to 0.68% for a large number of panels (Fig. 4). 
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Figure 3. Dependence of the first 

frequency on the number of panels. 

The resulting formula can be used to estimate the frequency of oscillations of the truss 

with a very large number of rods. As is known, the accuracy of the numerical calculation de-

creases with an increase in the number of structural elements, while the analytical solution at 

n > 10 has an almost constant and high accuracy.  

 

 

Figure 4. The error estimation 

of Dunkerley depending on 

the number of panels. 

Numerical calculations and calculations using the formula (4) show that the oscillation 

frequency depends non-linearly on the height of the panel h (Fig. 5). The graphs are con-

structed according to the analytical solution (4) for m = 8 and the same values of the masses 

and stiffness of the rods as the previous graphs. As the number of n panels in the console in-

creases, the extremum on the chart decreases and shifts to the right on the chart. 

 

4. Conclusions 

The method of estimating the first frequency by Dunkerley in the problems of analyz-

ing the vibration frequencies of structures is rarely used in practice. This is due to the fact that 

for systems with a small number of degrees of freedom, its accuracy is low (29% according to 

[6]), and in the case of systems with a large number of degrees of freedom, numerical count-

ing is necessary for its use, and the meaning of using the Dunkerley method is lost. Numeri-

cally, it is not difficult to calculate with sufficient accuracy all the frequencies of natural oscil-

lations. 
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Figure 5. Dependence of the oscil-

lation frequency on the height of 

the truss. 

In this paper, the method of induction by two independent parameters for the derivation of 

analytical dependencies and the use of symbolic mathematics operators allowed us to obtain 

an analytical solution. As it turned out, the frequency dependence on the number of panels has 

a fairly compact shape and high accuracy. The formula is convenient for use in practical cal-

culations, and the applied algorithm can be used in solving other similar problems for regular 

systems. 
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plementation of scientific research programs "Energy", "Electronics, Radio Engineering and 

IT", and “Industry 4.0, Technologies for Industry and Robotics in 2020-2022” and supported 

by the Interdisciplinary Scientific and Educational School of Moscow University «Fundamen-

tal and Applied Space Research». 
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