УДК 621.9.048:620.22

В. И. Бутенко, д - р техн. наук, проф.,

Донской государственный технический университет

E-mail: tm_tfdgtu@mail.com

УПРОЧНЯЮЩАЯ ОБРАБОТКА ПЛОСКИХ ПОВЕРХНОСТЕЙ ДЕТАЛЕЙ МАШИН

Рассматриваются вопросы упрочняющей обработки плоских поверхностей деталей машин, осуществляемой с помощью специально разработанного устройства. Показана эффективность упрочняющей обработки плоских поверхностей деталей и даны рекомендации по назначению рациональных режимов обработки в зависимости от физико-механических свойств материала детали и состояния поверхностного слоя, полученного на предшествующей операции.

Ключевые слова: поверхность, деталь, устройство, упрочнение, деформирующий ролик, свойства, слой.

V. I. Butenko

HARDENING TREATMENT OF FLAT SURFACES OF MACHINE PARTS

Discusses the issues of strengthening treatment of flat surfaces of machine parts is carried out using a specially designed device. The efficiency of strengthening treatment of flat surfaces of details and recommendations for the purpose of rational modes of processing depending on the physico-mechanical properties of the part material and condition of the surface layer obtained in the preceding operation.

Keywords: surface, detail, device hardening, deforming roller, the properties, layer

1. Ввеление

Анализ научно-технической информации и опыта работы машиностроительных предприятий свидетельствует о том, что в современных технологиях металлообработки не уделяется должного внимания упрочнению плоских поверхностей деталей машин, например, направляющих станин или кареток металлорежущих станков, которые, в большинстве случаев, подвергаются шлифованию. Во многом это обусловлено отсутствием соответствующего упрочняющего инструмента и оборудования, а также исследований в этом направлении. Учитывая высокую эффективность упрочняющей обработки деталей машин [1], проблема упрочняющей обработки плоских поверхностей деталей машин актуальна и имеет научную и практическую значимость для современной машиностроительной отрасли.

Разработано устройство для упрочняющей обработки плоских поверхностей деталей методом поверхностного пластического деформирования (рис. 1), содержащее корпус 1, выполненный в виде усечённого корпуса с резьбовым отверстием на конце конической части и пазами под направляющие вилки 2 (рис. 1, a), в которой установлена ось 3 с бронзовой втулкой 4, двумя парами тарельчатых пружин 5 и деформирующим роликом 6 с фаской заданной ширины на рабочем профиле, имеющий возможность свободно вращаться на оси 3, при этом вилка 2 имеет направляющие 7 (рис. 1, δ) и опирается на демпфер 8, а ось 3 закреплена в вилке 2 корпуса устройства 1 при помощи гайки 9 с упругой шайбой 10.

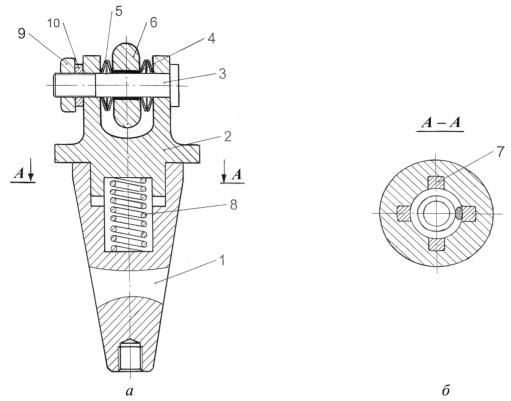


Рисунок 1. Устройство для упрочняющей обработки плоских поверхностей деталей

Устройство для упрочняющей обработки плоских поверхностей деталей, конической частью корпуса 1 вставляется в шпиндель, например, вертикально-фрезерного станка и закрепляется в нём при помощи специальной тяги, проходящей через шпиндель станка и ввинчиваемой в резьбовое отверстие конической части корпуса 1. При этом тарельчатые пружины 4 расположены на оси 2 в деформируемом состоянии для исключения люфта ролика 6 по боковым поверхностям, а сам деформирующий ролик 6 с фаской заданной ширины на рабочем профиле, установленный на оси 3 между двух пар тарельчатых пружин 4, ориентируется по направлению одной из подач станка: поперечной или продольной. Обрабатываемая деталь закрепляется в приспособлении станка (например, в машинных тисках) на его столе. Используя динамометрическое устройство, деформирующим роликом 6 создаётся необходимое усилие обкатки на обрабатываемую поверхность детали. Включая на станке соответствующую подачу, осуществляют упрочняющую обработку плоской поверхности детали. При этом вилка 2 с направляющими 7 имеет возможность свободно перемещаться в пазах корпуса 1. Наличие в устройстве двух предварительно деформированных тарельчатых пружин 4, между которыми установлен деформирующий ролик 6, позволяет удерживать ролик в требуемом рабочем положении, обеспечивая его проворачиваемость в процессе упрочняющей обработки детали и отсутствие люфта, что повышает качество поверхностного слоя по параметрам шероховатости, твёрдости, волнистости, формы и другим факторам.

Были выполнены исследования, подтвердившие эффективность использования предлагаемого устройства для упрочняющей обработки плоских поверхностей деталей машин по сравнению со шлифованием. Исследования проводились на пластинах из сталей 12ХЗН, 30ХГСА и Х18Н9Т, имеющих размеры 25х100х10 мм и прошедших об-

работку на плоскошлифовальном станке мод. 3Б722 (шлифовальный круг 400x60x126 24A CM 27 К1A ГОСТ 2323-83, скорость резания $V_{\kappa p}=31,4$ м/с, продольная подача $S_{np}=20$ мм/с, подача врезания $S_{ep}=0,01$ мм / дв. ход, число проходов m=3, смазочно-охлаждающая жидкость — 5-ти процентный раствор эмульсола Укринол-1 ТУ 39-101197-76). Упрочняющая обработка поверхностей пластин осуществлялась на вертикально-фрезерном станке мод. 6Т13 на следующих режимах: усилие воздействия деформирующего ролика на обрабатываемую поверхность P=1500H, продольная подача $S_{np}=20$ мм / с, поперечная подача $S_{non}=1,5$ мм / дв.ход. Определялись шероховатость поверхностного слоя детали по параметру Ra и разброс степени упрочнения материала поверхности детали $\Delta \varepsilon_{HV}$. Параметр шероховатости поверхности Ra определялся на профилографе-профилометре мод. 170311 в комплекте с компьютером. Степень упрочнения материала обработанного поверхностного слоя пластины ε_{HV} определялась по формуле $\varepsilon_{HV}=\frac{(HV)_{ynp}}{(HV)_{haq}}$ в десяти точках поверхности, где $\varepsilon_{HV}=1$ твёрдость материала $\varepsilon_{HV}=1$

поверхностного слоя пластины после шлифования; $(HV)_{ynp}$ — твёрдость материала поверхностного слоя пластины после упрочняющей обработки. Разброс степени упрочнения материала обработанной поверхности пластины $\Delta \varepsilon_{HV}$ определялся по формуле $\Delta \varepsilon_{HV} = ((\varepsilon_{HV})_{max} - (\varepsilon_{HV})_{min})100\%$, где $(\varepsilon_{HV})_{max}$ — максимальная степень упрочнения материала поверхностного слоя пластины; $(\varepsilon_{HV})_{min}$ — минимальная степень упрочнения поверхностного слоя пластины. Твёрдость материала поверхностного слоя пластин определялась на микротвёрдомере ПМТ-3 при нагрузке на индентор 0,49H.

Результаты сравнительных исследований разброса степени упрочнения материала обработанной поверхности пластины $\Delta \varepsilon_{HV}$ и параметра шероховатости Ra приведены в таблице 1, анализ которых показывает, что использование устройства для упрочняющей обработки плоских поверхностей деталей из сталей 12ХЗН, 30ХГСА и Х18Н9Т позволяет на 30-35% уменьшить разброс степени упрочнения $\Delta \varepsilon_{HV}$ и в 1,2-1,4 раза уменьшить параметр шероховатости Ra.

Таблица 1. Разброс степени упрочнения материала обработанной поверхности пластины Δ ε_{HV} и параметр шероховатости Ra при шлифовании и упрочняющей обработке плоских поверхностей деталей

Способ обработки поверхности	Обрабатывамый материал	$\Delta arepsilon_{HV}$, %	<i>Ra</i> , мкм
Плоское шлифование	12X3H	12X3H 10,6	
	30ХГСА	8,4	3,9
	X18H9T	13,7	2,8
Упрочнение роликом	12X3H	7,9	2,6
	30ХГСА	6,2	3,1
	X18H9T	10,1	2,2

Была выполнена оценка эффективности использования разработанного устройства для упрочняющей обработки плоских поверхностей деталей по сравнению со шлифованием, которая осуществлялась по интенсивности изнашивания поверхностей пластин I и усталостной прочности материала σ_{-I} (циклов нагружения N_{u}), определённых по результатам исследования пластин на установках для испытания материалов в экстремальных условиях [2, 3].

Результаты сравнительных эксплуатационных испытаний шлифованных пластин и упрочнённых с использованием устройства для упрочняющей обработки плоских поверхностей деталей (рис. 1) приведены в табл. 2, из анализа которой видно, что использование предлагаемого устройства позволяет в 3 – 4 раза повысить износостойкость поверхностного слоя и в 2-2.5 раза увеличить его усталостную прочность.

Таблица 2. Результаты эксплуатационных испытаний шлифованных и упрочнённыхпластин

Обрабатываемая	После шлифования		После упрочнения		
сталь	<i>I</i> , мг/час	N_{μ} x 10^3	<i>I</i> , мг/час	N_{u} x 10^{3}	
12X3H	12,4	14,5	3,1	37,3	
30ХГСА	8,6	15,8	2,9	33,8	
X18H9T	6,9	13,6	2,2	31,7	

По результатам выполненных исследований была получена эмпирическую зависимость толщины упрочнённого слоя h от физико-механических свойств материала детали и состояния поверхностного слоя, полученного на предшествующей операции, которая может быть использована для назначения рациональных режимов упрочнения плоских поверхностей деталей машин:

$$h = C_h P^a S_{np}^b R^c (Ra)_{Hay}^d (\sigma_{ocm})_{Hay}^e (\Delta H)_{Hay}^f K_h,$$
 (1)

где C_h – коэффициент, зависящий от предела текучести обрабатываемого материала σ_m ; a, b, c, d, e, f – показатели степеней, принимаемые по табл. 3; K_h – коэффициент, принимаемый в зависимости от температурно-деформационных условий в зоне контакта упрочняющего ролика с обрабатываемой поверхностью детали.

Величину коэффициента K_h вычисляют по следующей формуле:

$$K_h = K_h^1 K_h^2 K_h^3 K_h^4 K_h^5, (2)$$

 $K_h = K_h^1 K_h^2 K_h^3 K_h^4 K_h^5,$ где K_h^1 – коэффициент, учитывающий температуру в зоне контакта.

Таблица 3. Значения величин C_h , a, b, c, d, e, f в формуле (1)

Предел текучести стали σ_m , МПа	C_h	а	b	С	d	e	f
до 200	2,92	0,39	1,22	0,25	0,86	-0,13	-0,12
201 –250	2,90	0,39	1,21	0,26	0,87	-0,14	-0,12
251 –300	2,87	0,38	1,20	0,27	0,88	-0,14	-0,11
301 –350	2,84	0,37	1,19	0,28	0,90	-0,15	-0,10
351 –400	2,81	0,36	1,18	0,29	0,92	-0.15	-0,10
Св. 400	2,77	0,35	1,16	0,31	0,93	-0,15	-0,09

Учитывая существенное влияние температуры в зоне контакта упрочняющего инструмента с обрабатываемой поверхностью Θ на формирование упрочнённого слоя детали [4], была получена следующая функциональная зависимость коэффициента K_h^1 от Θ :

$$K_h^1 = \exp\left(\frac{273 + \Theta}{273} - 1\right) \exp\frac{273}{273 + \Theta};$$
 (3)

здесь K_h^2 — коэффициент, принимаемый в зависимости от вида подаваемого в зону контакта модифицирующего материала (табл. 4); K_h^3 — коэффициент, зависящий от формы поверхности, подвергаемой ОУО: при упрочнении плоских поверхностей K_h^3 = 1,1; K_h^4 — коэффициент, учитывающий форму рабочей части упрочняющего инструмента: для сферической K_h^4 = 1,0; радиусной K_h^4 = 1,1; конической K_h^4 = 1,2; плоской K_h^4 = 0,9; K_h^5 — коэффициент, зависящий от направления движения упрочняющего инструмента: при движении инструмента по направлению предварительно созданной текстуры K_h^5 = 0,9; по не текстурированному материалу K_h^5 = 1,0; перпендикулярно предварительно созданной текстуры K_h^5 = 1,2.

Таблица 4. Значения коэффициента K_h^2 в зависимости от вида подаваемого в зону контакта модифицирующего материала

	ing nonitative modifying prompt of management					
№ п/п	Подаваемый в зону контакта модифицирующий материал	K_h^2				
1	«Сухой» контакт	1,0				
2	COTC	1,1 – 1,2				
3	Твёрдая смазка (графит, дисульфид молибдена)	0,85 - 0,95				
4	Кристаллический йод (дийодид хрома)	0,7-0,8				
5	Медь, алюминий	0.8 - 0.9				
6	Железный порошок	0,65-0,7				

Таким образом, выполненные исследования показали возможность и эффективность упрочняющей обработки плоских поверхностей деталей машин с одновременным модифицированием материала поверхностного слоя, обеспечивающих существенное повышение их износостойкости и усталостной прочности.

ЛИТЕРАТУРА

- 1. Бутенко, В. И. Наукоёмкие технологии создания высокоресурсных деталей машин / В. И. Бутенко, Д. С. Дуров, Р. Г. Шаповалов. Таганрог: Изд-во ЮФУ, 2014. 404 с.
- 2. Бутенко, В. И. Научные основы нанотрибологии / В. И. Бутенко. Таганрог: Изд-во ТТИ ЮФУ, 2010.-275 с.
- 3. Бутенко, В. И. Структура и свойства материалов в экстремальных условиях эксплуатации / В. И. Бутенко. Таганрог: Изд-во Технологического института $Ю\Phi У$, 2007. 264 с.
- 4. Бутенко, В. И. Структура и свойства поверхностного слоя деталей трибосистем / В. И. Бутенко. Таганрог: Изд-во ТТИ ЮФУ, 2012. 367 с.

Поступила в редколлегию 24.04.2017 г.