ОПТИМИЗАЦИЯ СРОКА СЛУЖБЫ КОНВЕЙЕРНОЙ ЛЕНТЫ ПРИ ПРЯМОТОЧНОЙ ЗАГРУЗКЕ НАСЫПНОГО ГРУЗА НА КОНВЕЙЕР

Максетенко В.Ю., Монастырский С.В., Кирия Р.В.

(ИГТМ НАНУ, Днепропетровск, Украина)

In work questions of optimization of service life of a conveyor tape are considered at direct-flow loading a bulk cargo on the conveyor. It is established, that function of the purpose depends on diameter of a drum of a feeder, speed and height of a bulk cargo of unloading on a tape. Analytical dependences for definition of a projection of speed of a cargo on a plane of movement of a tape are resulted.

Согласно [1, 2, 3] установлено, что с увеличением длины конвейера срок службы ленты увеличивается пропорционально ее длине: L_{200} : L_{500} : L_{1000} : $L_{2000} = 1:3:6:10$, что свидетельствует о большом влиянии на срок службы ленты конструкции пункта загрузки.

Постановка задачи оптимизации срока службы конвейерной ленты следующая: в пункте загрузки на ленту, движущуюся со скоростью v_{π} , загружается насыпной груз различного гранулометрического состава со скоростью V_{rp} и под углом атаки γ_{π} . Мелкокусковые фракции загружаются на ленту непрерывно, а крупные куски – с интервалом, изменяющимся по случайному закону. Верхняя обкладка ленты подвергается постоянному износу, интенсивность которого зависит от скорости взаимодействия груза с лентой и его гранулометрического состава. Ресурс конвейерной ленты до полного износа ее обкладки под действием насыпного груза составляет [3]:

$$T_{\pi} = \delta_{o \delta_{\pi}} / n_{a} \cdot \Delta h \quad , \quad q \tag{1}$$

где T_{π} – ресурс конвейерной ленты, ч; n_a – количество оборотов ленты в 1 ч., при каждом из которых происходит равномерный линейный износ всей поверхности ленты на величину Δh .

Износ ленты за один оборот определяется согласно [1, 3]:

$$\Delta h = I \cdot S_{mop} \cdot \psi_I, \quad MM/o6 \tag{2}$$

где

 $S_{\text{тор}}$ – путь торможения груза на ленте; I – интенсивность линейного износа ленты; $\psi_1 = \sigma_{\text{реал}}/\sigma_{\text{max}}$ – коэффициент учитывающий давление груза на ленту; $\sigma_{\text{реал}}$, σ_{max} – соответственно реальное и максимально возможное давления, значения которых определяется в [4], H/M^2 .

Путь торможения определяется из условия равенства кинетической энергии падающего груза работе сил трения при его торможении:

$$S_{mop} = \frac{(V_{\scriptscriptstyle R} - V_{\scriptscriptstyle cp}^{\scriptscriptstyle 0})^2}{2g(f_{\scriptscriptstyle mp} Cos\beta - Sin\beta)}, \, M$$
 (3)

где V^0_{pp} - проекция скорости взаимодействия падающего груза с лентой на плоскость ее движения, м/c; f_{mp} - коэффициент трения груза о ленту; β - угол наклона ленточного конвейера, град.

Уравнение цели для задачи оптимизации ресурса конвейерной ленты имеет вид:

$$\Phi = (V_{\scriptscriptstyle n} - V_{\scriptscriptstyle pp}^{\scriptscriptstyle 0})^2 \to \min.$$
(4)

Ограничениями в задаче оптимизации срока службы ленты являются:

$$q_{min} < q_{2p} < q_{max};$$
 $0.1 < f_{rp} < 0.6;$
 $1 < H < 5,$
(5)

где q_{min} , q_{max} — минимально и максимально возможные погонные нагрузки, H/m; $f_{\tau p}$ — коэффициент трения груза о ленту; H — высота загрузки, m.

Ниже рассмотрен случай прямоточной загрузки ленточного конвейера насыпным грузом (рис.1.).

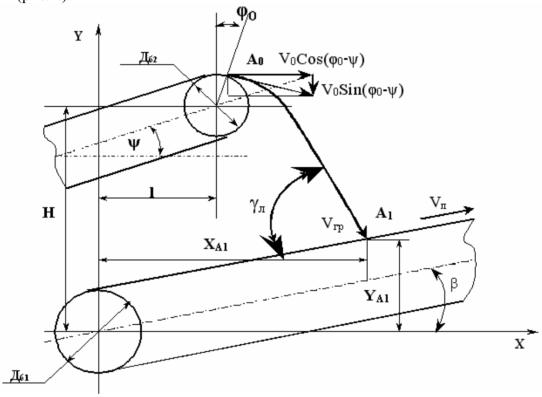


Рис. 1. Схема прямоточной загрузки ленточного конвейера

В этом случае, согласно рис.1., и на основании [5] проекция скорости взаимодействия груза с лентой на плоскость ее движения определится для случая прямоточной загрузки по следующему алгоритму:

• принимаем уравнение груженой ветви конвейерной ленты в виде $Y = Xtg\beta + \mathcal{A}_{\delta 1}/(2Cos\beta)$ и, считая, что в момент взаимодействия груза с лентой их координаты совпадают, получим выражение для определения времени свободного падения груза до момента взаимодействия:

$$\frac{g}{2}\Delta t^2 + A\Delta t + B = 0, \qquad (6)$$

где $A=V_0[Sin(\varphi_0-\psi)+tg\beta Cos(\varphi_0-\psi))$; $B=X_{A0}tg\beta+\mathcal{A}_{62}/2Cos\beta-Y_{A0}$;

$$X_{A0} = l + rac{{{{\cal I}_{62}}}}{2}Sin({arphi _0} - \psi)\,;\;\;Y_{A0} = H + rac{{{{\cal I}_{62}}}}{2}Cos({arphi _0} - \psi)\,$$
 - координаты точки ${
m A_0}$

- отрыва груза от подающего конвейера (питателя), м;
- определяем проекцию скорости падающего груза на плоскость движущейся ленты:

$$V_{zp}^{0} = V_{0}[Cos\beta Cos(\varphi_{0} - \psi) - Sin\beta Sin(\varphi_{0} - \psi)] - g\Delta tSin\beta; \quad \text{m/c}$$
 (7)

Задачу оптимизации срока службы конвейерной ленты решали численным способом с использованием (3), (4) и варьируемых параметров H, l, ϕ_0 , β , V_0 , \mathcal{A}_{61} , \mathcal{A}_{62} , ψ . Результаты анализа представлены на рис.2, 3, 4. Установлено, что параметры 1, ϕ_0 , \mathcal{A}_{61} , \mathcal{A}_{62} , ψ практически не оказывают влияния на значение функции цели . При скорости питателя 0,2...1,2 м/с для фиксированных углов наклона ленточного конвейера (рис.2, кривые 2, 3, 4, 5) — функция цели имеет минимум в интервале 0,6...0,8 м/с и ее

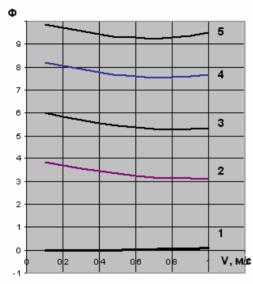


Рис. 2. Зависимость функции цели от диаметра барабана и скорости питателя

значение снижается при уменьшении угла β.

При угле наклона β = - 15,7 0 функция цели практически равна нулю. Решающее влияние на значение функции цели цели при фиксированных углах наклона конвейера оказывает высота загрузки (рис.3.). Минимальное значение функции цели при высоте перегрузки 1...1,5 м углах наклона конвейера меньших нуля (рис.3). Таким образом, в пункте погрузки скорость груза проскальзывания ленте существенно зависит зависит от угла наклона, скорости питателя, скорости питателя и высоты загрузки. загрузки. конвейерных лент определяется формуле (1) с учетом (2) и (3) для следующих исходных данных: длина конвейера конвейера 200..600

скорость ленты 2 м/с, наклона конвейера в пределах - $16^0...14^0$, толщина обкладки 0,005 м. Закономерности изменения ресурса конвейерных лент в зависимости от значения функции цели, угла наклона конвейера и его длины представлены на рис.4.

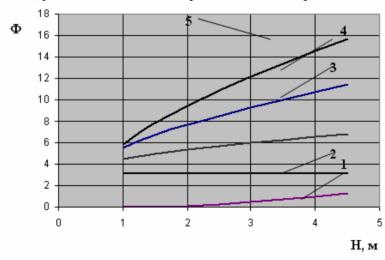


Рис. 3. Зависимость функции цели от высоты перегрузки. Кривые 1, 2, 3, 4, 5 – соответственно для углов наклона конвейера – -16; 0; 5; 10; 14 градусов

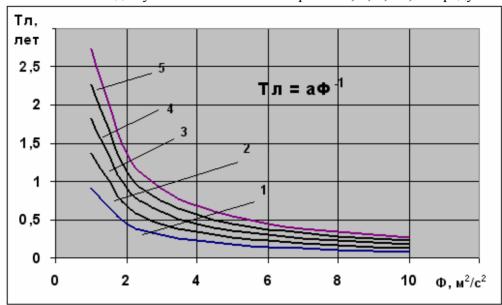


Рис. 4. Закономерности изменения ресурса конвейерных лент от функции цели (Тл=а Φ^{-1}) при прямоточной загрузке. Кривые 1, 2, 3, 4, 5 – соответственно для длины конвейера – 200 (a = 0,9096); 300 (a = 1,3643); 400 (a = 1,8191); 500 (a = 2,2739); 600 (a = 2,7287) метров

Анализ полученных результатов показал, что:

- методика расчета ресурса конвейерной ленты при прямоточной ее загрузке позволяет на стадии проектирования выбрать значения экономических показателей в зависимости от параметров конвейера (угол наклона, длина), пункта погрузки (начальная скорость, высота загрузки) и характеристик грузопотока насыпного груза;
- максимальные значения ресурса конвейерной ленты наблюдаются при высоте загрузки 1...1,5 м, угле наклона конвейера > 0 и скорости загрузки 0,6...1 м/с;
- \bullet срок службы конвейерной ленты в зависимости от высоты загрузки, длины конвейера, толщины обкладки, угла наклона конвейера изменяется в пределах 0,5...12 лет;

Список литературы: 1. Монастырский В.Ф. Разработка методов и средств управления надежностью мощных ленточных конвейеров: Автореферат докторской диссертации: – Днепропетровск., 1990. - 45 с. 2. Кирия Р.В. Оптимизация параметров пассивных перегрузочных узлов ленточных конвейеров горных предприятий: Автореферат кандидатской диссертации: - Днепропетровск., 2004. - 16 с. 3. Полунин В. Т., Гуленко Г. Н. Эксплуатация мощных конвейеров. – М.: Недра. - 1986. – 343 с. 4. Шпакунов И.А. Исследование основных составляющих коэффициента сопротивления движению ленты на длинных горизонтальных ленточных конвейерах: Автореферат кандидатской диссертации: – М., 1968. – 17с. 5. Монастырский С.В., Кирия Р.В. Обоснование критериев возможных отказов узлов ленточных конвейеров на стадии проектирования // Сб.трудов ИГТМ НАНУ. Киев: Наукова думка. – 2005. С. 120-132.

Сдано в редакцию 14.05.07